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Large-amplitude ion acoustic solitons in a warm 
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Abstract. We have studied the nonlinear propagation of ion acoustic waves in a warm 
magnetoplasma. The limits of different parameters for the existence of localised soliton 
solutions are obtained. An analytical expression is obtained for the small-amplitude limit 
of this wave. 

1. Introduction 

In the last two decades, interest has grown in studying the nonlinear solitary ion 
acoustic waves in plasmas using the reductive perturbation theory (Washimi and 
Taniuti 1966, Davidson 1972, Tappert 1972, Tagare 1972). Following the reductive 
perturbation method all the nonlinear terms of the equations of motion cannot be 
taken into account. Sagdeev (1966) demonstrated the nonlinear propagation of ion 
acoustic solitons in a cold plasma without using the reductive perturbation technique. 
Taking all the nonlinear terms into account, he showed that finite amplitude localised 
density humps with speed V, for Vs< V<1.6Vs,  where VS= (T,/Mi)”* is the ion 
acoustic speed, can occur. The basic equations governing the dynamics of nonlinear 
solitary waves can be reduced to an equation in the form of the energy integral of a 
classical particle in a potential well. Analysing the potential, one can find the existence 
of localised solitons. Recently, Zakharov and Kuznetsov (1974) have studied the 
nonlinear finite but slow ion acoustic solitary waves in the presence of a magnetic 
field. Later, Shukla and Yu (1978) investigated the same problem with ion acoustic 
waves propagating obliquely to the magnetic field. Their studies have, however, been 
restricted to the small-amplitude limit in the sense that all the nonlinear terms are 
not taken into account. Recent!y Yu et a1 (1980) demonstrated the fully nonlinear 
ion acoustic solitons in a magnetoplasma with hot electrons and cold ions. 

In this paper, we study the effects of ion temperature on the propagation of 
nonlinear ion acoustic solitons taking all the nonlinear terms into account. In 8 2, we 
have reduced the basic equations into an equation analogous to the energy integral 
of a classical particle in a potential well. Section 3 contains the analysis of the Sagdeev 
potential to determine the necessary conditions for the existence of localised solitons. 
In § 4 we have briefly discussed the small-amplitude limit of the wave. Finally, our 
results are discussed in 8 5. 
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2. Basic equations 

We consider the propagation of a nonlinear ion acoustic wave in a plasma consisting 
of hot electrons and warm ions in the presence of a constant magnetic field BOZ. The 
wave dynamics is governed by the following equations, 

&n + V * ( n u )  = 0  (1) 

e 1 
M ,  Min 

6,u + (U *V)U = --VI$ ---vp + (U x a]) 

n = n e  = no exp(&/T,) (3) 

where 4 is the electrostatic potential of the wave, n, U, a, (=eBo/MiC), p and Mi 
are the ion density, ion velocity, ion gyrofrequency, ion pressure and ion mass 
respectively. ne and Te are the electron density and temperature respectively. In 
equation (3), we have made use of the charge neutrality condition. In equation (2), 
we shall express the pressure term in terms of density by the use of the thermodynamic 
equation of state (Chen 1974), 

p = C(nMJY (4) 
where C is a constant and y is the ratio of the specific heats CJC,. In this problem, 
we assume the ion motion to be three dimensional and neglect the variation of all 
quantities in the y direction. Equations (1)-(3) can now be written as follows: 

( 5 )  

(6)  

a,n + & ( n u , )  + a,(nv,) = 0 

&v, + ( u x d x  +u,~,)u, = -(e/Mi)&4 + uYai- T 
Mi(nin ) 1 / 3 a ~ n  

&U, +(U,& +U,d,)U, = -u,ni 
m 

= no exp(e4l TJ (9) 

where the ion temperature is defined as T = 5 p 0 / 3 n o ,  p o  and no are, respectively, the 
equilibrium ion pressure and density. In this problem, the number of degrees of 
freedom for ions is three. Hence, for adiabatic compression, y is taken to be ? (Chen 
1974) in equations (6) and (8). The linear dispersion relation is deduced from equations 
( 9 4 9 )  and is given by 

w = k,C,(l + k:pf)-1’2 (10) 
where C, = (K(Te  + T)/Mi)”* is the ion acoustic speed, K is the Boltzmann constant, 
k, and k, are wave vectors in the x and z directions respectively and p,  = C,/n, is 
the ion gyroradius. In the deduction of equation ( lo) ,  we have assumed w << Cl,. The 
dispersion of the ion acoustic waves in this system is purely due to gyroradius effects. 
This dispersion can balance the nonlinear steepening of large-amplitude ion acoustic 
waves to evolve into solitary waves. 

In order to study the nonlinear propagation of the ion acoustic waves, we assume 
that the wave is stationary in the moving frame defined by 

7 = l,x +l,z -Mt, r = t  (11) 
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where M is the velocity of the nonlinear wave and 1, and 1, are direction cosines along 
the x and z directions respectively. Thus If + 1; = 1. 

Substituting equation (11) in equaiions (5) - (9)  and then imposing the boundary 
conditions n = 1, 4 = 0, U = 0 at 77 +fa, we obtain the following equation, 

(d/dq)2[l,n + & ~ n ~ / ~ + M ~ / 2 n ~ ] = { - ( l f / M ~ ) [ ( n  -1)n + & ~ ( n ~ / ~ -  l )n]+(n  -1)) (12) 

where we have normalised n to no, M to V,, V, ( i  = x, y,  z )  to V,, 7 to p (= V,/sZi) 
and 4 to TJe .  The velocities V, and V, are defined in the laboratory frame and 
U = TIT,. 

Multiplying both sides of equation (12) by 

(d/dq)(l,n +&"I3 +M2/2n2)  

and integrating, we obtain the following equation, 

(dn/dvI2 + IClh M,  1,) = 0 

where 

+ ( n )  = [ n ' / ~ ~ ( n  + gn *I3 - ~ ~ ) ~ ] { / : n  2(n - 112 + 2 ~ ~ n  

x [ ( ~ - / l ) n l , n  - in- l l ) (n  - 1 ) ] + ~ ' ( 1 - n ) ~  

+ $ c / l n  '(n 'I3 -- n 'I3 - n + 1 - 

+%U 1,n (n 10/3_2n5/3+1)-fUM2n2(2n5/3-5n2/3+3)}. (14) 

lM2n t (3 n 5/3 - 5 n + 2) 

Here, we have imposed the boundary condition dn/d7 = 0 at n = 1. Equation (13) 
is in the form of the energy integral of a classical particle in a potential well. +(n) in 
equation (14) is known as the Sagdeev or classical potential. We shall analyse the 
Sagdeev potential in the next section to determine the necessary conditions for the 
existence of stationary solitons. If we put U = 0, then equation (14) is reduced to 
equation (10) of Yu er a1 (1980). Now for the soliton solution, 4(N) = 0, where N 
is the amplitude of the soliton. Putting this condition in equation j14), we get the 
nonlinear dispersion relation given by 

11N2(N - 1)2 +2M2N[(1 - rS)Nl,N - (N - II)(N - l)] 

+M4(l - N ) * + ~ U ~ : N ~ ( N ~ / ~ - N ~ / ~ - N +  1) 

- $ T I : M ~ N ( ~ N ' / ~ - ~ N  +2)  

+ & u ~ ~ ~ N ~ ( N ' ~ / ~ - ~ N ' / ~ +  l)-f~rM~N~(2N'/~-5N~/~+3)=0. (15) 

This is a relation between the soliton amplitude and its speed. 

3. Analysis 

Now we analyse the Sagdeev potential $ ( a )  to determine the necessary conditions 
under which solitary wave solutions can exist. It is found from the analogy of the 
motion of a classical particle in a potential well that localised soliton solutions would 
be possible if +in) is negative between the points n = 1 and n = N. In the potential 
well, a particle entering from the left will move to the right side of the well (77 >0) 
and is reflected at n = N, which then returns to 7 = 0, where n = 1, making a single 
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transit. Therefore, the necessary conditions for the existence of localised wave solu- 
tions are $(N) = $(1) = $,,(l) = 0. Now, in what follows, we study the behaviour of 
$ ( n )  at n = 1 and n = N. The Taylor expansion of the Sagdeev potential $ ( n )  at n -‘I 1 
and n -- N can be written respectively as 

$ ( n  = 1) = [1/M2(1 +U -M2)2][(If -M2)(1 - M 2 )  

+2a1: -ulfM2+aZIf -aM2](n  -1y 

+ [2/M2( 1 + U - M ’ ) ~ ]  (1 + $U - 2M2)[(1 f - M 2 ) (  1 - M 2 )  + 2ulf 

- ~ l f M ~ + ~ ~ l f  -uM2](n  - 1)’+[2/3M2(1 + u - M ~ ) ~ ]  

x[31f -2M2-M21f +7ulf -$alfM2+4a21f -$uM2](n -1)3 (16) 

and 

$ ( n  = N) = [N4/M2(N2+uNE/3-M2)2] 

x{21fN(2N2-3N+ 1)+2M2[N(1-lf)(21,,N+1) 

- (2N - l:)(N - 1) -N(N - l:)]+2M4(N - 1) 

+ &ulfN ( 14NEi3 - 1 lN5I3 - 9N + 6 )  

- g ~ l f M ~ ( 4 N ~ ’ ~ - 5 N  + 1)+(18~~l f /75 )N(8N‘~ /~ -  llN5I3+3) 

- $ d ~ f ~ N ( l l N ~ / ~  - 20N2’3 + 9)}(n - N). (17) 

From equations (16) and (17), we cannot easily find out the necessary conditions for 
the existence of a solitary wave. Therefore, we have solved equation (15) numerically 
for M for different values of N, I ,  and U. $ ( n )  is then calculated from equation (14) 
for each set of values obtained from (15). We have found that for some sets of values 
of M,  N, I, and U, $ ( n )  gives the soliton solution. The width A of this soliton can be 
calculated from the maximum depth d of the Sagdeev potential $ ( n )  and is given by 
(Bujarbarua and Schamel 1981) 

A = N/ Jd. (18) 

4. Small-amplitude limit 

We now discuss the small-amplitude case of the soliton. For N = l ,  equation (13) 
can be written in the following form, 

(19) $(dc%/dq)2 +Xi& + X 2 s n 3  = 0 

where 

x1 = (I/M~){[~: - ~ ~ ( 1 + 1 : ) + ~ ~ + 2 ~ 1 : - ( + i f ~ ~ + ( + ~ i :  - u ~ 2 ]  

x[l+2(1 + a ) / ~ 2 + 3 ( 1 + a ) 2 / ~ 4 + 4 ( 1  + d 3 / ~ 6 1 }  

x2= ( i / ~ ~ ) { [ i f  - M ~ ( I  + 1 : ) + ~ ~ + 2 ~ 1 :  -uifM2+u2if - u M ~ ]  

and 

x [(4/M2)(1 +-$U) + 12(1+ u)(l  +$u)/M4 + 24(1 + u ) ~ / M ~  

x (1 +$U)  + 4  + 8(1+ u ) / M z  + 12(1+ u)’/M4 + 16(1 + u ) ~ / M ~ ]  
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+ [l + 2(1 + u ) / M 2  + 3(1 + u ) 2 / M 4 +  4(1 + u ) 3 / M 6 ]  

x [211 -$M2(2+1t)44ulZ -bu11M2+;u211 -YuM2]}  
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(21) 

a n d S n = n - l = O ( E ) .  

(Washimi and Taniuti 1966, Yu et a1 1980), 
Equation (19) can be integrated once to yield the well known soliton solution 

Sn = S N  s e ~ h ~ [ ( - X ~ / 2 ) ” ~ ~ ] ,  x 1 < 0  (22) 

where SN = -(Xl/Xz), and we have imposed the boundary conditions dSn/dq = Sn = 0 
at 7 -,fa. 

5. Discussion 

Our numerical results are plotted in figures 1-5. As it is well known that for ion 
temperature comparable to electron temperature, ion acoustic waves are heavily 
Landau damped (Chen 1974), we have chosen the values of U less than 0.2867. Also 
numerical results show that ion acoustic solitons exist in a warm magnetoplasma for 
0.7 s 1, s 0.8. This indicates that the direction of the wave vector must be restricted 
to this small range so as to obtain solitary waves. 

From figure 1, it is clear that the velocity of the soliton increases with the increase 
of U for fixed values of I , .  

N 

Figure 1. The Mach number of the soliton as a function of its amplitude for different 
values of U at fixed I ,  = 0.7.  The soliton solution exists only to the left of the vertical line. 
The dotted curve corresponds to a cold plasma. 
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0 7  
10 15 20  2 5  3 0  
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Figure 2. The Mach number of the soliton as a function of its amplitude for different 
values of I ,  at fixed CJ = 0.2. The localised soliton solution exists only below the broken line. 

10 14 18 2 2  2 6  30 
N 

Figure 3. The variation of M/I,  with the amplitude of the soliton for different values of 
0 :  a, d = 0 . 2 ,  I, =0.75; b, 0=0.2, li =0.7; c, 0=0.02, I ,  =0.7, and d, c r = O ,  I, =0.7. 



Solitons in a warm magnetoplasma 445 

The velocity of the soliton increases with I ,  for fixed values of u as is evident from 
figure 2. On the other hand, the maximum amplitude decreases with the increase of 
I ,  for fixed ion temperatures and velocities of the soliton. 

In figure 3, we have plotted M / l ,  against N .  The ratio of the Mach number to I ,  
is always found to be greater than unity. 

In figures 4 and 5 ,  we have plotted the width of the soliton as a function of its 
amplitude for fixed values of I ,  and u. In figure 4 the broken curve corresponds to 
a cold plasma. The finite temperature of the ions increases the width of the soliton 
for fixed amplitude and I,. It is seen from figure 5 that the width of the soliton 
decreases with the increase of I ,  for fixed amplitude and (T. 

7: 

5 

h 

2 

1 
1u 1 5  2 0  2 5  3 0  

N 

Figure 4. The variation of the width of the soliton with its amplitude at fixed [ 2  = 0.7 for 
different values of U. 

The numerical calculations of equation (20) show that XI is always negative which 
satisfies the condition for the existence of localised solitons at the small-amplitude 
limit of the ion acoustic waves. 

In conclusion, we have shown that a nonlinear ion acoustic wave propagates as a 
localised solitary wave in a warm magnetoplasma with a subsonic speed. The problem 
of stability of these waves is beyond the scope of this paper and is addressed to future 
investigation. 
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I 

10 16 2 2  2 8  
N 

Figure 5. The variation of the width of the soliton with its amplitude at fixed cr = 0.2 for 
different values of I,. 
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